Point of Sale System Architecture and Security

Lucas Zaichkowsky

lucas@accessdata.com

Twitter: @LucasErratus

- IT and InfoSec geek since mid-90s
- Evangelist and researcher
- Subject matter expert:
 - Electronic payment processing and PCI
 - Cyber espionage
 - Cybercrime
 - Enterprise IR

Durango, CO Population: 17,557

Serious Texas Bar-B-Q POS breach, 2010

More than 270 of the stolen credit cards used for fraud nationally

Mama's Boy POS breach, 2011

Open since the 80s Closed 4 months later

Iron Horse web site breach, 2013

2,500 web site registrations Unsure how many cards stolen

Since the breach, they moved to a hosted checkout solution

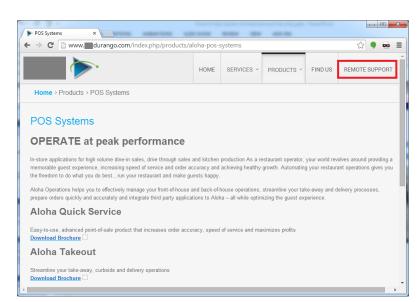
How many small business breaches? Probably thousands

- In 2010, I personally saw several dozen POS breaches
- 190+ POS breaches in 2013 Verizon DBIR
 - Verizon is 1 of 23 PCI Forensics Investigators
- Breached small businesses sometimes notify customers
 - Post a notice on the store window
- Small merchant breaches rarely make the news in larger cities
 - The media has "better" content (e.g. violent crime, celebrities)

Small breaches are usually opportunistic

Opportunistic POS Attack Methodology:

- 1. Scan internet for pcAnywhere, VNC, RDP ports
- 2. Exploit vulnerable versions, brute force password guessing
- 3. Instant admin access to entire POS environment
- 4. Drop keystroke recorders, network sniffers, RAM scrapers
- 5. Automatically transmits stolen card data



Why so easy?!

- Small business owners use remote desktop to work remotely
 - "The POS dealer keeps me safe"
 - "Why would hackers come after me?"
- Local POS dealers use remote desktop for support
 - Most are power users
 - o Security what?

Larger and More Sophisticated Incidents

Examples of targeted breach victims

- 2004 to 2006 Boston Market, Barnes & Noble,
 Sports Authority, Forever 21
- 2005 CardSystems, DSW, Office Max
- 2006 TJX Companies, Inc.
- 2007 Dave & Buster's
- 2008 Hannaford, Heartland, RBS WorldPay
- 2011 Sony, FIS
- 2012 Global Payments
- 2013 Target, Neiman Marcus
- 2014 P.F. Chang's

Targeted breaches, legitimate hacking

Targeted Attack Methodology:

- 1. Perform footprinting and reconnaissance
- 2. Gain initial entry. Common methods...
 - a) SQLi
 - b) Buying backdoor access on black market
 - c) Compromise a 3rd party with access
- 3. System and network enumeration
- 4. Privilege escalation
- 5. Lateral movement to establish a beachhead
 - a) Drop a diverse set of backdoors
 - b) Steal user passwords, target domain controllers and file servers
- 6. Find pivot points into the card data environment (CDE)
- 7. Modify code or drop malware to harvest card data
- 8. Exfiltrate undetected through obfuscation, throttled transfer rates, "blending in"

Fig. 1 "Hacker"

Windows isn't the problem

- They know Linux, Solaris, AIX, etc.
 - Backdoors are planted there too (e.g. LKMs)
 - Privileged credentials are stolen
- Systems for ATM limits and fraud detection are compromised
- Perform PIN-based attacks (e.g. HSM API brute force)

Payment Processing Architecture Crash Course

Standalone terminals

- Dial-up and IP enabled
- Encrypted IP connection direct to processor
- Never(?) hacked remotely. Requires physical tampering

Electronic cash registers (ECRs)

- Communicate with each other on a hub using IRC (Inter-Register Communications)
- Communications device attached to one register connects over dial-up or encrypted IP direct to processor
- Never(?) hacked remotely. Requires physical tampering

Point of sale (POS)

- Most run on Windows
- POS terminals (aka registers) run the POS client component
- Registers communicate with a "back of house" POS server

- Peripherals attach via USB or COM
 - Magstripe readers (MSR)
 - PIN Pads
 - PIN Pad/magstripe reader all-in-one
- MICR check readers
- Barcode scanners
- Receipt printers

Magstripe Read Demo

Peripherals: Magstripe readers (MSRs)

- Most are configured for "keyboard emulation"
 - Swipe card > keyboard rapidly types magstripe data

- HID mode installs USB device with drivers and API interaction
- It's all unencrypted
- Only Track2 is needed to clone magstripe cards for fraud

Peripherals: PIN pads

- Uses TDES algorithm and DUKPT key management for encrypting the PIN
 - Example encrypted PIN block: B07F65762F0F4701
 - Yes, this is secure
- Decryption keys are held by the payment processor, not the merchant
- PCI PIN Transaction Security (PTS) approved
 - Rigorous process with lots of anti-tampering requirements/testing

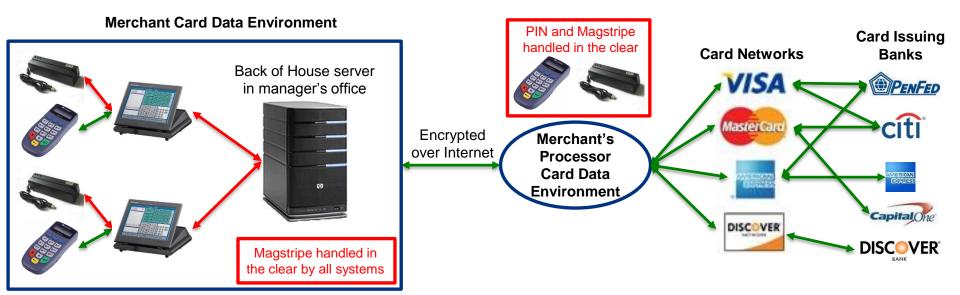
EMV Chip Read Demo

Peripherals: EMV readers

- Designed to reduce card-present fraud
 - Chip cannot be cloned
- EMV has "fallback mode" to support magstripe cards
 - When enabled, magstripe fraud is still a problem
- Chip contains magstripe "equivalent" data unencrypted
 - Different iCVV prevents use for magstripe fraud
 - Card number (PAN) and expiration date are unencrypted!
 - Card-not-present fraud still viable without CVV2

RAM dump during EMV chip read


```
3CF4F68C3386CD99
ait Response.360
3000F.Response>.
...<.B987A67B1F3
CF2....%...@...4
17042010000083
0000000031010...
.nt1.7691825EED6
4E101CA.CF5C452A
1708B598996AD628
```



Card Data Flow and Common Thieving Locations

Card data flow

- Card data environment (CDE) is supposed to be segmented from the rest of the network
- Encryption of sensitive card data is only required over untrusted networks

Encrypted Unencrypted

Card data flow: Service providers

- 3rd parties handle sensitive card data for the merchant
 - Web developers using shopping cart software
 - Online ordering services
 - Servers used by outsourced mobile applications
 - Value-add payment gateways
- Merchants by contract are supposed to hold 3rd parties liable
 - They rarely do
 - When a 3rd party service provider is breached, the merchant pays
 - Lawsuits!

Card data thievery

- POS terminals
 - Keystroke recorders, RAM scrapers
- POS back of house server
 - RAM scrapers, network sniffers, database theft
- Payment processors
 - RAM scrapers, network sniffers, database theft, HSM API brute force
- Web sites
 - Code modification, database theft

Practical Advice

Educate small business and POS dealers

- Stop using remote desktop software
 - Use a service like LogMeIn with two-factor auth enabled
 - LogMeIn supports one time PIN (OTP) via email for second factor
 - Use SMS email address so it only goes to a phone (e.g. 5551234567@vtext.com)
- Enable egress filtering, don't use POS systems for web/email
- Point to Point Encryption (P2PE)
 - When upgrading POS hardware, use encrypting peripherals
 - Software P2PE solutions are snake oil
 - Decryption should be done at the merchant's processor
 - Make sure keyed in card data and EMV are also encrypted

Larger targets

- Point to Point Encryption (P2PE)
- Know your network
- Know your enemy's TTPs (aka Intelligence-driven defense)
 - Don't underestimate their skills
- Spend more energy detecting and investigating incidents
 - A seemingly innocent alert could lead you to something major (e.g. psexec)
- Get executive support to harden systems and revoke local admin rights
 - Attackers steal and abuse privileged credentials
 - Protect and monitor their use accordingly

Questions?

Lucas Zaichkowsky

lucas@accessdata.com

Twitter: @LucasErratus